Proton

Description of tetrahedrons

This group consists of the following 347 tetrahedrons.

I












































































































































(1)












































(2)





































(3)































(4)

























(21)

















(31)













(41)












(12)










(32)














(42)











(13)











(23)






(43)












(14)












(24)







(34)




(121)





(321)






(421)




(131)





(231)


(431)




(141)






(241)



(341)

(312)





(412)




(132)





(232)




(432)



(142)



(242)




(342)


(213)






(413)




(123)


(423)



(143)





(243)


(343)



(214)






(314)





(124)


(324)




(134)


(234)

(3121)


(4121)


(1321)

(2321)


(4321)

(1421)
(2421)


(3421)
(2131)


(4131)


(1231)
(4231)

(1431)

(2431)
(3431)

(2141)



(3141)


(1241)

(3241)

(1341)
(2341)
(1312)


(2312)
(4312)

(1412)


(2412)
(3412)
(2132)



(4132)

(1232)

(4232)


(1432)
(2432)
(3432)

(2142)

(3142)

(1242)

(3242)


(1342)
(2342)

(1213)



(3213)
(4213)

(1413)


(2413)
(3413)
(3123)
(4123)

(1423)
(2423)

(3423)
(2143)

(3143)



(1243)
(3243)

(1343)

(2343)

(1214)



(3214)

(4214)
(1314)



(2314)
(4314)
(3124)

(4124)
(1324)
(2324)


(4324)
(2134)

(4134)
(1234)
(4234)
(13121)
(23121)
(43121)
(14121)
(24121)
(34121)
(21321)

(12321)
(42321)

(24321)
(34321)
(21421)
(12421)
(32421)

(23421)
(12131)
(32131)
(42131)
(14131)
(24131)
(34131)
(31231)
(24231)
(34231)
(31431)

(32431)
(13431)
(23431)
(12141)

(32141)
(42141)
(13141)
(23141)
(43141)
(41241)

(23241)
(43241)
(41341)
(42341)
(21312)
(41312)

(12312)
(14312)
(34312)
(21412)
(31412)

(12412)
(13412)
(12132)

(32132)

(14132)
(34132)
(31232)
(41232)
(14232)
(24232)
(34232)
(31432)
(32432)
(13432)
(23432)
(12142)
(42142)
(13142)
(43142)
(31242)
(41242)
(13242)
(23242)
(43242)
(41342)
(42342)

(31213)

(41213)

(13213)
(14213)
(24213)
(21413)

(31413)
(12413)
13413)
(23123)
(14123)
(24123)
(21423)
(12423)
(32423)
(23423)
(12143)
(42143)
(13143)

(43143)

(41243)
(23243)
(43243)
(21343)
(41343)
(12343)
(42343)
(31214)

(41214)

(13214)
(23214)
(14214)
(21314)

(41314)

(12314)
(14314)
(13124)
(23124)
(24124)
(21324)
(12324)
(42324)

(23424)
(12134)
(32134)
(34134)
(31234)
(34234)
(213121)
(123121)

(214121)
(124121)

(121321)
(321321)

(242321)
(342321)


(121421)

(232421)
(432421)

(312131)
(132131)

(314131)

(134131)
(131231)


(131431)
(431431)
(232431)

(423431)
(412141)


(142141)
(413141)

(143141)
(141241)
(241241)


(141341)

(121312)
(141312)
(341312)



(121412)
(131412)
(431412)
(412412)

(312132)

(132132)
(232132)


(231232)


(324232)
(234232)
131432)
(232432)
(413432)

(412142)
(242142)



(241242)

(423242)
(243242)

(242342)
(342342)
(131213)
(231213)
(141213)
(241213)
(213213)


(121413)
(421413)
(131413)





(121423)
(412423)
(232423)
(423423)


(413143)

(143143)
(343143)

(423243)
(343243)

(341343)

(342343)
(131214)
(231214)
(141214)
(241214)



(121314)
(321314)
(141314)
(341314)

(314314)


(124124)
(121324)
(312324)
(242324)
(342324)





(234234)
(1213121)


(1214121)



(2321321)










(1312131)


(1314131)






(3431431)



(1412141)
(2412141)


(1413141)

















(1412412)

(1312132)
(2312132)







(2324232)





(2412142)




(1241242)

(2423242)
(3423242)







(1213213)













(2423423)


(1413143)
(3413143)



(3423243)




(2342343)












(1314314)













The sum of all the matrices used to generate this shape is

402
478
478
478
0
478
402
478
478
0
478
478
402
478
0
478
478
478
402
0
-1489
-1489
-1489
-1489
347

The sum of columns is (1836 1836 1836 1836 7344)
The sum of products is 6*3370896 = 20225376
The volume ratio is sqrt(20225376/6) = 1836
The mass ratio of the proton to an electron is 1836.152