This group consists of the following 347 tetrahedrons.
I |
(1) (2) (3) (4) |
(21) (31) (41) (12) (32) (42) (13) (23) (43) (14) (24) (34) |
(121) (321) (421) (131) (231) (431) (141) (241) (341) (312) (412) (132) (232) (432) (142) (242) (342) (213) (413) (123) (423) (143) (243) (343) (214) (314) (124) (324) (134) (234) |
(3121) (4121) (1321) (2321) (4321) (1421) (2421) (3421) (2131) (4131) (1231) (4231) (1431) (2431) (3431) (2141) (3141) (1241) (3241) (1341) (2341) (1312) (2312) (4312) (1412) (2412) (3412) (2132) (4132) (1232) (4232) (1432) (2432) (3432) (2142) (3142) (1242) (3242) (1342) (2342) (1213) (3213) (4213) (1413) (2413) (3413) (3123) (4123) (1423) (2423) (3423) (2143) (3143) (1243) (3243) (1343) (2343) (1214) (3214) (4214) (1314) (2314) (4314) (3124) (4124) (1324) (2324) (4324) (2134) (4134) (1234) (4234) |
(13121) (23121) (43121) (14121) (24121) (34121) (21321) (12321) (42321) (24321) (34321) (21421) (12421) (32421) (23421) (12131) (32131) (42131) (14131) (24131) (34131) (31231) (24231) (34231) (31431) (32431) (13431) (23431) (12141) (32141) (42141) (13141) (23141) (43141) (41241) (23241) (43241) (41341) (42341) (21312) (41312) (12312) (14312) (34312) (21412) (31412) (12412) (13412) (12132) (32132) (14132) (34132) (31232) (41232) (14232) (24232) (34232) (31432) (32432) (13432) (23432) (12142) (42142) (13142) (43142) (31242) (41242) (13242) (23242) (43242) (41342) (42342) (31213) (41213) (13213) (14213) (24213) (21413) (31413) (12413) 13413) (23123) (14123) (24123) (21423) (12423) (32423) (23423) (12143) (42143) (13143) (43143) (41243) (23243) (43243) (21343) (41343) (12343) (42343) (31214) (41214) (13214) (23214) (14214) (21314) (41314) (12314) (14314) (13124) (23124) (24124) (21324) (12324) (42324) (23424) (12134) (32134) (34134) (31234) (34234) |
(213121) (123121) (214121) (124121) (121321) (321321) (242321) (342321) (121421) (232421) (432421) (312131) (132131) (314131) (134131) (131231) (131431) (431431) (232431) (423431) (412141) (142141) (413141) (143141) (141241) (241241) (141341) (121312) (141312) (341312) (121412) (131412) (431412) (412412) (312132) (132132) (232132) (231232) (324232) (234232) 131432) (232432) (413432) (412142) (242142) (241242) (423242) (243242) (242342) (342342) (131213) (231213) (141213) (241213) (213213) (121413) (421413) (131413) (121423) (412423) (232423) (423423) (413143) (143143) (343143) (423243) (343243) (341343) (342343) (131214) (231214) (141214) (241214) (121314) (321314) (141314) (341314) (314314) (124124) (121324) (312324) (242324) (342324) (234234) |
(1213121) (1214121) (2321321) (1312131) (1314131) (3431431) (1412141) (2412141) (1413141) (1412412) (1312132) (2312132) (2324232) (2412142) (1241242) (2423242) (3423242) (1213213) (2423423) (1413143) (3413143) (3423243) (2342343) (1314314) |
The sum of all the matrices used to generate this shape is
402 478 478 478 0 |
478 402 478 478 0 |
478 478 402 478 0 |
478 478 478 402 0 |
-1489 -1489 -1489 -1489 347 |
The sum of columns is (1836 1836 1836 1836 –7344)
The sum of products is 6*3370896 = 20225376
The volume ratio is sqrt(20225376/6) = 1836
The mass ratio of the proton to an electron is 1836.152